메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박사윤 (가천대학교) 김창업 (가천대학교)
저널정보
한의병리학회 동의생리병리학회지 동의생리병리학회지 제37권 제5호
발행연도
2023.10
수록면
134 - 138 (5page)
DOI
10.15188/kjopp.2023.10.37.5.134

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Large language models (LLMs) have introduced groundbreaking innovations in various fields, including healthcare, where they augment medical diagnosis, decision-making, and facilitate patient-doctor communication through their exceptional contextual understanding and inferential abilities. In the realm of Korean medicine (KM), the utilization of LLMs is highly anticipated. However, it demands additional training with domain-specific KM data for seamless integration of KM knowledge. There are two predominant strategies for training domain-specific LLMs in the KM domain. The first approach entails direct manipulation of the LLM"s internals by either pretraining a base model on an extensive corpus of KM data or fine-tuning a pretrained model"s parameters using KM-related question-answering datasets. The second approach avoids internal model manipulation and leverages techniques like prompt engineering, retrieval augmented generation, and cognitive augmentation. Domain-specific LLMs specialized for KM hold the potential for diverse applications, ranging from personalized medical education plans and content generation to knowledge integration, curriculum development, automated student assessment, virtual patient simulations, and advanced research and scholarly activities. These advancements are poised to significantly impact the field of KM and medical education at large.

목차

서론
본론
결론
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0