메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김승빈 (영남대) 손유라 (영남대) 양정훈 (영남대)
저널정보
대한건축학회 대한건축학회논문집 大韓建築學會論文集 第40卷 第3號(通卷 第425號)
발행연도
2024.3
수록면
247 - 254 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Persistent condensation in residential spaces can lead to structural damage and mold growth, posing health risks to occupants. While existing studies focus on reducing condensation, there"s a gap in research on condensation prediction. This study aims to explore the feasibility of a virtual sensor for condensation prediction using machine learning and data from prior studies. A high-accuracy virtual sensor model was developed and verified using condensation measurement data. Data preprocessing and Pearson correlation analysis were conducted, and input variables were selected through ReliefF evaluation. Indoor and outdoor temperature and humidity were chosen as final input variables. A prediction model was crafted using classification learning algorithms: Decision Tree(DT), Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP). Validation of the prediction model was performed using Confusion matrix, Accuracy, and F-1 score. The accuracy of the virtual sensor model was 97.1% for Decision Tree, 98.5% for SVM, and 98.6% for MLP. The developed model is expected to effectively prevent condensation in residential spaces susceptible to surface condensation. Future work will focus on integrating virtual sensors into existing ventilation and air conditioning systems for practical application in residential spaces.

목차

Abstract
1. 서론
2. 이론적 고찰
3. 연구 방법
4. 연구 결과
5. 결론
REFERENCES

참고문헌 (24)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0