메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yuandong Li (Guangxi Vocational College of Water Resources and Electric Power) Qiong Wang (Guangxi Vocational College of Water Resources and Electric Power)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.13 No.3
발행연도
2024.6
수록면
303 - 312 (10page)
DOI
10.5573/IEIESPC.2024.13.3.303

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Artificial intelligence (AI) has brought great changes to the traditional sports industry. In order to solve the shortcomings of current recognition methods for tennis error training and obtain better recognition effect, we constructed a recognition method based on AI technology. A random projection algorithm was used to reduce the dimension of feature vectors, a CNN (convolutional neural network) model was used to learn training samples after dimension reduction, and a recognition model of wrong tennis training actions was constructed. The preprocessing of data included converting the original Cartesian coordinate system into a cylindrical coordinate system and normalizing the time of a skeletal motion sequence. Experiments show that the recognition accuracy of this model on the NTU-RGB+D dataset can reach 95.34%. The recognition accuracy of this model on the UTD-MHAD dataset can reach 94.12%. Compared with another model, the accuracy of this model was improved, which verified the superiority of this model. It can provide some technical support for the recognition of wrong tennis training actions and improve the tennis teaching effect and students’ learning level.

목차

Abstract
1. Introduction
2. Related Work
3. Methodology
4. Result Analysis and Discussion
5. Conclusions
References

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-151-24-02-090062707