메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Hamza Ahmad (Korea Advanced Institute of Science and Technology) Irfan Sami (Milim Syscon) Trung-Kien Vu (Milim Syscon) Dong-Hyun Lim (Milim Syscon) Ki-Bum Park (Korea Advanced Institute of Science and Technology)
저널정보
전력전자학회 ICPE(ISPE)논문집 ICPE 2023-ECCE Asia
발행연도
2023.5
수록면
1,697 - 1,703 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
The PI control scheme is widely adapted for speed control of induction motor. The major drawback of PI control scheme is lack of robustness to external and internal parameters. This paper proposes a robust control technique for Induction Machines (IM), known as Integral Super Twisting Sliding Mode Control (ISTSMC), which combines the advantages of Super Twisting Sliding Mode Control (STSMC) and Integral Sliding Mode Control (ISMC) to eliminate chattering and improve the robustness and convergence of IM torque and speed. The power losses thermal stresses of semiconductor junctions are also evaluated in the IM drive plant model, where the thermal model of switching elements is incorporated. The control algorithm is tested in real-time using a high-fidelity hardware-in-the-loop (HIL) simulator comprising of Typhoon-HIL 604 and Imperix B-Box RCP3.0, which accounts for communication delays and allows for wide test coverage. The proposed ISTSMC controller is built in a rapid-control prototyping device and is interfaced with the HIL. The results shows that the ISTSMC increases the robustness of the system without adding further losses or thermal stress to the system and thus demonstrate the reliability of the control algorithm during full system operation.

목차

Abstract
I. INTRODUCTION
II. VIRTUAL PROTOTYPING OF DRIVE SYSTEM
III. INDUCTION MOTOR MODEL
IV. CONTROLLER DESIGN
V. RESULTS AND DISCUSSIONS
VI. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0