메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Ryosuke Shigetomi (Tokyo Metropolitan University) Keiji Wada (Tokyo Metropolitan University)
저널정보
전력전자학회 ICPE(ISPE)논문집 ICPE 2023-ECCE Asia
발행연도
2023.5
수록면
3,269 - 3,274 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
SiC and GaN power devices have been developed to achieve high-speed switching operations in power converter circuits. The stray inductance caused by bus bar geometries between dc capacitors and power devices has effects on high-speed switching circuits, such as surge voltages and switching losses. Therefore, evaluating parasitic parameters is essential for designing power converter circuits. Currently, parasitic parameters considering a wide variety of bus bar geometries are calculated by electromagnetic field analysis each time and that takes a large calculation time. This paper proposes a prediction procedure for the parasitic parameters considering laminated bus bar geometries. This procedure consists of performing machine learning with a neural network using datasets from electromagnetic field analysis and analyzing a laminated bus bar image. In order to verify the availability of this procedure, it is applied to a laminated bus bar with a hole, and it is also shown that the predicted values of three parasitic - resistance, - inductance, and - capacitance almost correspond to the analyzed values and are the same in the order of magnitude as the measured values in the frequency range of 100 kHz to 100 MHz.

목차

Abstract
I. INTRODUCTION
II. DESCRIPTION OF THE PROPOSED PROCEDURE
III. PREDICTION RESULT
IV. MEASUREMENT
V. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0