메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
구용근 (동국대학교) 정용운 (동국대학교) 김동화 (동국대학교) 김상원 (동국대학교) 김은설 (동국대학교) 박병재 (동국대학교) 이승주 (동국대학교) 정승원 (동국대학교)
저널정보
한국산업식품공학회 산업식품공학 산업식품공학 제28권 제1호
발행연도
2024.2
수록면
1 - 9 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The secondary growth model for Salmonella was developed based on the artificial neural network (ANN) with data collected from ComBase and FoodData Central. In addition to the existing secondary model variables (temperature, pH, Na+, and water contents), more input variables (sugar, carbohydrate, lipid, and protein contents) were considered. The output variables were microbial growth parameters (lag phase duration [l] and maximum growth rate [mmax ]). A commercial ANN program (NeuralWorks Predict) was utilized with training at 80%, validation at 10%, and test data at 10%. ANN models were created using all data and cleansed data. Using the cleansed data, the training/testing root mean square error (RMSE) for mmax improved from 0.14/0.16 to 0.11/0.14, whereas the RMSE for l was still not acceptable, from 11.94/33.03 to 7.09/4.18. The l data were divided into two ranges with high and low goodness of fit, whereas the ANN model for each f ield was built, resulting in an optimally low RMSE.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0