메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
윤성건 (Andong National University) 권혁찬 (Andong National University) 박은주 (Andong National University) 조영복 (Andong National University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제29권 제9호(통권 제246호)
발행연도
2024.9
수록면
79 - 87 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구는 청각 장애인의 의사소통 개선을 목표로, 음성 데이터에서 감정을 인식하고 분류하는 인공지능 모델을 개발하였다. 이를 위해 CNN-Transformer, HuBERT-Transformer, 그리고 Wav2Vec 2.0 모델을 포함하는 세 가지 주요 인공지능 모델을 활용하여, 사용자의 음성을 실시간으로 분석하고 감정을 분류한다. 음성 데이터의 특징을 효과적으로 추출하기 위해 Mel-Frequency Cepstral Coefficient(MFCC)와 같은 변환 방식을 적용, 음성의 복잡한 특성과 미묘한 감정 변화를 정확하게 포착하고자 하였다. 실험 결과, HuBERT-Transformer 모델이 가장 높은 정확도를 보임으로써, 음성기반 감정 인식 분야에서의 사전 학습된 모델과 복잡한 학습 구조의 융합이 효과적임을 입증하였다. 본 연구는 음성 데이터를 통한 감정 인식 기술의 발전 가능성을 제시하며, 청각 장애인의 의사소통과 상호작용 개선에 기여할 수 있는 새로운 방안을 모색한다는 점에서 의의를 가진다.

목차

Abstract
요약
I. Introduction
II. Related works
III. The Proposed Scheme
IV. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0