메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Rubina Akter Rabeya Subrata Bhattacharjee (Inje University) Dongmin Kim (JLK) Hee-Cheol Kim (Inje University) Nam-Hoon Cho (Yonsei University Hospital) Heung-Kook Choi (Inje University)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제27권 제11호
발행연도
2024.11
수록면
1,268 - 1,288 (21page)
DOI
10.9717/kmms.2024.27.11.1268

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Today, the appropriate utilization of colors in histopathology tissue images is a major research area in the fields of medical imaging and digital pathology, particularly when cancerous tissues are examined.
This research intends to concentrate on experiments and analyzes the different color/stain normalization methods including histogram equalization, Reinhard, Macenko, Zheng, Gray world, and Vahadane that may impact and enhance the accuracy of computer-aided cancer diagnosis. The study additionally experi- ments with several pre- and post-processing steps with normalization approaches that aid the enhance- ment of image quality. In this study, 300 cancerous histopathology tissue images (256 × 256 pixels) were selected from different datasets on prostate, breast, and colon cancer. To allow quantitative comparison of the various approaches, several statistical measures were computed, including the Bhattacharyya dis- tance, mean square error (MSE), structural similarity index metric (SSIM), standard deviation (SD) and coefficient of variation (CV) of the normalized median intensity (NMI), and the weighted sum. The Reinhard method was the most effective for all three datasets in combination with bilateral filter, CLAHE, and gamma correction. The ultimate objective is to find out the best-fitted normalization method and suitable pre-and post-processing methods for three types of cancer datasets. Our comparative research study will greatly aid the future development of new strategies in the fields of digital pathology and medical imaging.

목차

ABSTRACT
1. INTRODUCTION
2. RELATED WORKS
3. MATERIALS AND METHODS
4. RESULT AND DISCUSSION
5. CONCLUSION
REFERENCE

참고문헌 (51)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-091188303