메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
조경주 (한국건설기술연구원) 손병후 (한국건설기술연구원)
저널정보
한국생활환경학회 한국생활환경학회지 한국생활환경학회지 제31권 제6호
발행연도
2024.12
수록면
423 - 430 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The primary approach to green remodeling for windows in existing buildings involves the removal of old windows and the installation of high-performance replacements. However, this process typically requires an extended construction period and incurs additional costs related to demolition and waste management. To address these challenges, a green remodeling double-skin window technology has been developed, which involves adding new windows to the existing ones without removal. This study quantitatively analyzes the energy performance of the green remodeling double-skin window system and applies the findings to energy simulations for actual commercial facilities, providing foundational data for carbon emission reduction in the building sector. The key findings are as follows: To assess the annual energy consumption reduction achieved by applying the green remodeling double-skin window system, public commercial facilities built before 2000 were selected as case studies. To verify the simulation results against actual carbon emissions in existing commercial facilities, additional energy consumption from equipment, which is not reflected in ECO2, was incorporated based on statistical data. The findings showed that the actual carbon emissions were approximately 14% higher than the standard emissions for commercial facilities between 2017 and 2019, indicating the simulation results for the existing building were reasonably accurate. Furthermore, the application of the green remodeling window system is predicted to reduce carbon emissions by approximately 32% in the target building.

목차

Abstract
1. 서론
2. 연구 진행
3. 토의
4. 결론
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092138307