메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
YI Shan (Zao Zhuang University) YUANYUAN Liu (Zao Zhuang University) QIUYAN Sun (Zao Zhuang University)
저널정보
한국유통과학회 산경연구논집 The Journal of Industrial Distribution & Business Vol.15 No.9
발행연도
2024.9
수록면
29 - 35 (7page)
DOI
10.13106/jidb.2024.vol15.no9.29

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: With the rapid development of the e-commerce industry, online e-commerce festivals represented by the "Double Eleven Online Shopping Festival" and "618 Mid-Year Promotion" in China play a unique role in consumer activities and have an important impact on various consumers. As aborigines in the Internet era, college students have huge consumption potential. In order to meet the pursuit of a better life for college students and achieve impressive business results, e-commerce platforms will launch various e-commerce festivals. Research design, data and methodology: This article constructs a research model based on the stimulus organism response model and clue utilization theory, proposes relevant hypotheses, and uses SPSS 27.0 to test the proposed hypotheses. From the perspectives of promotion level, timeliness, and variety of categories, this study aims to verify the impact of e-commerce festivals on college students' purchasing intentions and draw relevant conclusions. Results: Empirical verification has shown that the promotion level, timeliness, variety of categories, and holiday trust of e-commerce festivals have a significant positive impact on the e-commerce festival trust of college students as a consumer group. Conclusions: The conclusion on college students' purchasing intentions not only has guiding significance for the formulation of marketing strategies for enterprises, but also helps to understand the current behavior patterns of young consumers.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0