메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
양자강 (대한기계설비산업연구원) 채수인 (대한기계설비산업연구원) 박두용 (청운대학교) 진상기 (대한기계설비산업연구원)
저널정보
대한설비공학회 대한설비공학회 학술발표대회논문집 대한설비공학회 2024년도 하계학술발표대회 논문집
발행연도
2024.6
수록면
191 - 194 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The Mechanical Equipment Act was enacted (2018.04) and implemented (2020.04) for the development of the national economy through the safety of the people and the development of the mechanical equipment industry. Based on this Act, the owner or manager of mechanical equipment installed in buildings of a certain size or larger shall comply with the maintenance standards of mechanical equipment, and shall check the performance necessary for maintenance and prepare inspection records. However, currently, since the entire report is not computerized, data on performance inspection exist as structured/unstructured data and unstructured data that are not utilized. Therefore, in this study, among the various data recorded in the currently implemented performance inspection report of mechanical equipment, cases of data written in unstructured form were investigated, and data analysis was conducted on a method of formalizing it so that it can be computerized and used, and the results are as follows. When judged based on the 110 mechanical equipment performance inspection reports used in this study, the report can be largely classified into a result report/unstructured data/energy usage analysis report, and a plan for interpreting the data should be prepared for each part. In the case of unstructured data, which accounts for the largest part, it is classified into three categories: interpreting the photo itself, recognizing the result value expressed in the photo, and interpreting image-type data such as thermal images.

목차

Abstract
1. 서론
2. 연구방법
3. 기초자료 해석 결과
4. 결 론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092122836