메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Youngkyo Oh (Chonnam National University)
저널정보
한국영어학회 영어학 영어학 Volume.25
발행연도
2025.1
수록면
330 - 366 (37page)
DOI
10.15738/kjell.25..202503.330

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The study aimed to quantify the content and keyword relationships in AI-based English education texts to understand the current status of English education and gain insights into the future direction of English education. Data analysis involved a text analysis that utilized Natural Language Processing (NLP) techniques to extract meaningful content and information from large-scale text data, identifying new meanings and knowledge at the contextual level by considering the relationships between texts and words. The primary analysis methods used included keyword analysis, network text analysis, and topic modeling. The research findings are as follows. First, a frequency analysis of the collected texts revealed terms such as ‘technology,’ ‘learning,’ ‘textbooks,’ ‘big data,’ ‘application,’ ‘mathematics,’ ‘information,’ ‘students,’ and ‘edtech’ based on Term Frequency (TF) values. TF-IDF (Term Frequency-Inverse Document Frequency) values identified ‘textbooks,’ ‘learning,’ ‘big data,’ and ‘edtech.’ Additionally, N-gram analysis highlighted the term ‘development and implementation of AI digital textbooks.’ Next, through ego-network analysis for relationship exploration, words related to ‘learning,’ ‘textbooks,’ ‘technology and future trends’ were found to be connected around the term ‘English.’ Finally, topic modeling analysis using Latent Dirichlet Allocation (LDA) classified the texts into five topics: ‘AI-Based Educational Innovation,’ ‘Transition to a Digital-Based Learning Environment,’ ‘Future-Oriented Changes in the Education System,’ ‘Learner-Centered Personalized English Education,’ and ‘Technological Innovation and Services in the Education Industry.’ This study provides insights into the future direction of English education by providing educators and learners with AI-powered text analysis tools.

목차

ABSTRACT
1. 서론
2. 이론적 배경
3. 연구방법
4. 연구 결과
5. 논의 및 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092310881