메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sunjoo Choi (Dongguk University) Myung-Kwan Park (Dongguk University)
저널정보
한국영어학회 영어학 영어학 Volume.25
발행연도
2025.1
수록면
415 - 430 (16page)
DOI
10.15738/kjell.25..202503.415

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A range of empirical factors have been identified in the literature as interacting with the strength of syntactic priming: the lexical boost, the inverse frequency effect, and the asymmetrical decay. This study explores how these factors can be represented within a general learning framework called the hierarchical Bayesian model (HBM), utilizing data from the K-English Textbook corpus. The HBM conceptualizes syntactic knowledge as a hierarchical structure of syntactic statistics, which is continually updated through Bayesian inference based on the language experience (Xu and Futrell 2024). Given this background, the current research aims to investigate the underlying mechanism of syntactic priming from a different angle using statistical learning. After building the L2 HBM, two simulations are conducted employing Pickering and Branigan’s (1998) English ditransitive materials. In so doing, we demonstrate that the L2 HBM successfully captures the aforementioned properties of syntactic priming, as a previous study reported. To account for these observed factors simultaneously, we support the claim that empirical properties of syntactic priming are realized in the cognitive model architecture.

목차

ABSTRACT
1. Introduction
2. Xu and Futrell (2024)
3. The L2 Hierarchical Bayesian Model and its Ability
4. Discussion
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092310907