메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 대한기계학회 논문집 A권 대한기계학회논문집 A권 제29권 제9호
발행연도
2005.9
수록면
1,199 - 1,208 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Nowadays, it is performed actively to optimize by using an approximate model. This is called the approximate optimization. In addition, the sequential approximate optimization (SAO) is the repetitive method to find an optimum by considering the convergence of an approximate optimum. In some recent studies, it is proposed to increase the fidelity of approximate models by applying the sequential sampling. However, because the accuracy and efficiency of an approximate model is directly connected with the design area and the termination criteria are not clear, sequential sampling method has the disadvantages that could support an unreasonable approximate optimum. In this study, the SAO is executed by using trust region, Kriging model and Optimal Latin Hypercube design (OLHD). Trust region is used to guarantee the convergence and Kriging model and OLHD are suitable for computer experiment. Finally, this SAO method is applied to various optimization problems of highly nonlinear mathematical functions. As a result, each approximate optimum is acquired and the accuracy and efficiency of this method is verified by comparing with the result by established method.

목차

Abstract

1. 서론

2. 순차적 근사최적화의 구성

3. 크리깅 모델을 이용한 순차적 근사최적화의 구성

4. 적용 예제

5. 결론

후기

참고문헌

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-017906932