메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 대한기계학회 논문집 A권 대한기계학회논문집 A권 제31권 제1호
발행연도
2007.1
수록면
26 - 35 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The vehicle of urban transit is a complex system that consists of various electric, electronic, and mechanical equipments, and the maintenance cost of this complex and large-scale system generally occupies sixty percent of the LCC (Life Cycle Cost). For reasonable establishing of maintenance strategies, safety security and cost limitation must be considered at the same time. The concept of system reliability has been introduced and optimized as the key of reasonable maintenance strategies. For optimization, three preceding studies were accomplished; standardizing a maintenance classification, constructing RBD (Reliability Block Diagram) of VVVF (Variable Voltage Variable Frequency) urban transit, and developing a web based reliability evaluation system. Historical maintenance data in terms of reliability index can be derived from the web based reliability evaluation system. In this paper, we propose applying inverse problem analysis method and hybrid neuro-genetic algorithm to system reliability optimization for using historical maintenance data in database of web based system. Feed-forward multi-layer neural networks trained by back propagation are used to find out the relationship between several component reliability (input) and system reliability (output) of structural system. The inverse problem can be formulated by using neural network. One of the neural network training algorithms, the back propagation algorithm, can attain stable and quick convergence during training process. Genetic algorithm is used to find the minimum square error.

목차

Abstract
1. 서론
2. 시스템 신뢰도 최적화
3. 브레이크 시스템의 신뢰도 평가
4. 브레이크 시스템의 신뢰도 최적화
5. 결론
후기
참고문헌

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-017645874