메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제14권 제2호
발행연도
2009.3
수록면
238 - 252 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
방송과 융합의 시대로 접어들면서 (IP)TV 단말에서 이용 가능한 프로그램 콘텐츠 수가 급격히 증가 하였다. 이로 인해, 사용자(시청자)가 선호하는 방송 프로그램 콘텐츠로의 접근성이 주요한 사항이 되었다. 본 논문은 유사 사용자 선호도에 기반을 둔 협업필터링을 이용하여(IP)TV 프로그램을 효율적으로 사용자에게 자동 추천하는 연구에 관한 내용이다. 개인의 시청 프로그램 선호도를 고려하여 방송 프로그램을 추천하기 위해서, 제안하는 추천 시스템의 구성은 오프라인과 온라인 연산으로 구성된다. 오프라인 연산과정에서 (IP)TV 프로그램, 장르, 채널에 대한 개인의 선호도를 묵시적으로 추론 하는 방법을 제시하고, 동적 퍼지 클러스터링 방법을 사용하여 각 개인의 선호도에 따라 사용자들을 그룹 짓되, 특징 벡터를 장르와 채널에 대한 선호도로 결합하여 사용하는 방법을 제시한다. 또한, (IP)TV 단말에 로그인 한 활동 사용자에게, 높은 정확도로 선호 프로그램을 추천하기 위해서, 활동 사용자와 관심 시청 프로그램이 유사한 사용자들을 유사도 측정 방법을 사용하여 한 번 더 추출하고, 이 추출된 유사 취향 사용자들의 선호 (IP)TV 프로그램들에 대해, EPG를 이용하여 현재 방송되지 않는 프로그램들을 제외시킨다. 마지막 단계에서는 추천 후보 프로그램들에 대해 본 논문에서 제안하는 순위 정렬 모델을 이용하여 추천 우선순위를 결정하여 제시한다. 특별히, 본 논문은 BM(Best Match) 알고리즘을 확장하여 개인 선호도를 고려한 순위 정렬 모델을 제시한다. 실험을 통해, 본 논문에서 제안한 프로그램 자동 추천 알고리듬은 2,441명의 사용자에 대해 5개의 프로그램을 추천하였을 경우, 62.1%의 예측 정확도를 나타내었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구 및 시스템 개괄
Ⅲ. 오프라인 연산 (선호도 추론 및 클러스터링)
Ⅳ. 온라인 연산 (개인별 자동 추천 알고리듬)
Ⅴ. 실험
Ⅵ. 결론
참고문헌
저자소개

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-568-019437872