메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김형도 (한양사이버대학교)
저널정보
한국전자거래학회 한국전자거래학회지 한국전자거래학회지 제14권 제4호
발행연도
2009.11
수록면
47 - 57 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
협업에 의한 태그 작성 시스템은 소셜 네트워크에서 다양한 공유 콘텐츠에 사용자가 태그를 부착할 수 있도록 허용하는데, 이러한 태그들은 본인뿐만 아니라 모든 커뮤니티 사용자들이 콘텐츠를 이용하는데 유용함을 준다. 협업 태그 기반의 추천에서는 사용자와 항목, 그리고 태그로 이루어진 3차원 데이터를 이용하는데, 이 데이터는 일반적으로 사용자와 항목으로 이루어진 2차원 데이터에 비하여 더 방대한 반면, 희소성(Sparsity)이 더 높다. 따라서 기존의 협업 필터링 기법을 바로 적용하는데 어려움이 많다. 잠재 요인 모델(Latent Factor Model)은 관찰된 값을 설명하는 잠재된 특징(요인)들을 밝히고, 이를 이용해서 문제를 해결하기 위한 모델로서 최근 협업 필터링에서도 성공적으로 적용되고 있으나, 모델을 학습하거나 개선하는 단계에서는 많은 시간과 노력이 필요하다는 단점이 있다. 이러한 잠재 요인 모델을 3차원 협업 태그 데이터에 적용하기 위해서는, 계산이 복잡한 협업 필터링 모델 수립의 어려움을 극복해야 한다. 이 논문에서는 사용자가 항목에 대해 사용한 태그들을 사용자 및 항목에 대한 잠재요인으로 간주하여 직관적인 모델을 수립하고, 사용자의 아이템에 대한 선호도를 결정하는 여러 가지 방법들을 제안하고, 실제 협업 태그 데이터를 이용하여 이들을 비교 평가한다.

목차

초록
ABSTRACT
1. 서론
2. 관련 연구
3. 협업 태그와 잠재 요인
4. 실험결과
5. 결론
참고문헌
저자소개

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-566-019091938