메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국멀티미디어학회 한국멀티미디어학회 국제학술대회 MITA 2006
발행연도
2006.7
수록면
232 - 235 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Due to the increasing demand for e-commerce, it is necessary to provide a new approach that is not same with off-line stores for internet customers. Since the efficient communication with customers is indispensable for recent e-commerce businesses, goods recommendation systems automatically suggest some products with customer's previous spending preference by customer's interest analysis using some sophisticated multi-media functions. However, current goods recommendation systems require high cost and time to develop and maintain the systems and it is difficult to understand and maintain the system by administrators. Therefore, many researchers are trying to complement these weak points for easy utilization and less expenditure using a small scale personalization service.
This paper proposes a new goods recommendation system using a web mining technique with association rules. In addition, we use a collaborative filtering technique for the small scale personalization service. Although association rule finds the rules based on the confidence and support between items in a massive database, it only considers the relationship between items without customer's personal preference. To overcome this defect, we use an improved Apriori algorithm to provide recommendation rule using item to item relation.

목차

ABSTRACT
1. INTRODUCTION
2. RELATED WORKS
3. THE DEVELOPMENT A GOODS RECOMMENDATION SYSTEM
4. THE IMPLEMENT OF GOODS RECOMMENDATION SYSTEM
5. CONCLUSIONS
6. REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-004-004266894