메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
韓政秀 (한국과학기술원) 金鍾成 (한국전자통신연구원) 宋原慶 (한국과학기술원) 方遠喆 (한국과학기술원) 李熙暎 (전남대학교) 卞增男 (한국과학기술원)
저널정보
대한전자공학회 전자공학회논문지-SC 電子工學會論文誌 第37卷 SC編 第6號
발행연도
2000.11
수록면
50 - 63 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 소프트 컴퓨팅 기법을 이용한 새로운 근전도 신호 패턴 분류 방법을 제안한다. 재활 로봇 시스템에서 기존에 사용되었던 여러 가지 입력 장치(음성, 레이저 포인터, 키패드, 3차원 입력기 등)에 비해 근전도 신호를 이용한 방식이 가지는 장점을 서술한다. 기존의 근전도 신호 분류 방법의 문제점인 사용자 의존성을 줄이기 위해 제안한 사용자 독립적인 특징 선택 방법에 대해 상술한다. 선택된 특징 집합을 이용하여 퍼지 패턴 분류기 및 퍼지 최대-최소 신경망을 구성하여 학습 전(퍼지 패턴 분류기)과 학습 후(퍼지 최대-최소 신경망)에 각각 83%와 90%의 분류 성공률을 얻어 제안된 방법의 유용성을 확인할 수 있었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 근전도 신호
Ⅲ. 근전도 신호의 패턴 분류
Ⅳ. 실험 및 결과 고찰
Ⅴ. 결론 및 추후과제
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-569-000658047