메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Peyman Hosseinzadeh Kassani (Yonsei University) Junhyuk Hyun (Yonsei University) Euntai Kim (Yonsei University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2015
발행연도
2015.10
수록면
173 - 176 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
The purpose of this study is introducing a graphical process unit (GPU) implementation of a modified fuzzy nearest neighbor rule useful for traffic sign detection (TSD). The new method tries to detect road signs using color information in order to locate regions of interest. The candidate regions of interest are obtained by color information. Afterward, candidate regions are used for making histogram of oriented gradient (HOG) feature. Finally, the features are fed into the GPU-based modified fuzzy nearest neighbor in order to detect traffic signs. The proposed rule modifies the way for fuzzification of query sample in terms of distances while the conventional fuzzy nearest neighbor (FNN) doesn’t care distance of local neighbors. The accuracy of the proposed method is compared with the state of the arts k-nearest neighbor (k-NN), FNN and support vector machine algorithms on the challenging German traffic sign detection benchmark (GTSDB) data set. Results indicate that the modified rule achieves good accuracy and is competitive compared to others.

목차

Abstract
1. INTRODUCTION
2. RELATED WORK
3. TRAFFIC SIGN DETECTION PIPELINE
4. RESULTS
5. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-001910808