메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
신동원 (광주과학기술원) 호요성 (광주과학기술원)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 2015년도 한국방송공학회 추계 학술대회
발행연도
2015.11
수록면
67 - 70 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
최근 깊이 영상 기반 렌더링 방법을 이용하여 제작된 3차원 컨텐츠가 우리의 눈을 즐겁게 해주고 있다. 이러한 깊이 영상 기반 렌더링에서는 필연적으로 색상 카메라와 깊이 카메라 간의 시점 차이가 발생한다. 따라서 두 시점을 일치시키는 전처리 과정으로서 카메라 파라미터가 중요한 역할을 수행한다. 카메라 파라미터를 획득하는 과정으로 카메라 캘리브레이션이 수행된다. 널리 사용되는 기존의 카메라 캘리브레이션 방법은 평면의 체스보드 패턴을 여러 자세로 촬영한 다음 패턴 특징점을 손으로 직접 선택해야하는 불편함이 따른다. 따라서 본 논문에서는 이 문제를 해결하기 위해 원형 샘플 화소 검사와 호모그래피 예측을 이용한 반자동 카메라 캘리브레이션을 제안한다. 제안하는 방법은 먼저 FAST 코너 검출 알고리즘을 이용하여 패턴 특징점의 후보를 영상으로부터 추출한다. 다음으로 원형 샘플 화소를 검사하여 후보군의 크기를 줄인다. 그리고 호모그래피 예측을 통해 손실된 패턴 특징점을 보완하는 완전한 패턴 특징점군을 획득한다. 마지막으로 화소 정확성 향상을 통해 실수 단위의 정확성을 가지는 패턴 특징점의 위치를 획득한다. 실험을 통해 제안하는 방법이 기존의 방법과 비교하여 카메라 파라미터의 정확성은 유지하고 수작업의 불편함을 해소할 수 있음을 확인했다.

목차

요약
1. 서론
2. 제안하는 패턴 특징점 검출 알고리즘
3. 실험 결과
4. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-568-002059345