메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강병호 (안랩) 양지수 (안랩) 소재현 (안랩) 김창엽 (안랩)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제26권 제2호
발행연도
2016.4
수록면
405 - 413 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 선제 대응을 위한 의심 도메인 추론 방안을 제시한다. TLD Zone 파일과 WHOIS 정보를 이용하여 의심 도메인을 추론하며, 후보 도메인 탐색, 기계 학습, 의심 도메인 집단 추론의 세 과정으로 구성되어 있다. 첫 번째 과정에서는 씨앗 도메인과 동일한 네임 서버와 업데이트 시간을 가진 다른 도메인을 TLD Zone 파일로부터 추출하여 후보 도메인을 형성하며, 두 번째 과정에서는 후보 도메인의 WHOIS 정보를 정량화하여 유사한 집단끼리 군집화 한다. 마지막 과정에서는 씨앗 도메인을 포함하는 클러스터에 속한 도메인을 의심 도메인 집단으로 추론한다. 실험에서는 .COM과 .NET의 TLD Zone 파일을 사용하였으며, 10개의 알려진 악성 도메인을 씨앗 도메인으로 이용하였다. 실험 결과, 제안하는 방안은 55개의 도메인을 의심 도메인으로 추론하였으며, 그 중 52개는 적중하였다. F1은 0.91을 기록하였으며, 정밀도는 0.95을 보였다. 본 논문에서 제안하는 방안을 통해 악성 도메인을 추론하여 사전에 차단할 수 있을 것으로 기대한다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련연구
Ⅲ. 의심 도메인 추론 방안
Ⅳ. 실험
Ⅴ. 논의
Ⅵ. 결론
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-002890674