메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ki-Woong Kim (Korea Occupational Safety and Health Agency) Yong Lim Won (Korea Occupational Safety and Health Agency) Dong Jin Park (Korea Occupational Safety and Health Agency) Young Sun Kim (Korea Occupational Safety and Health Agency) Eun Sil Jin (Hannam University) Sung Kwang Lee (Hannam University)
저널정보
한국독성학회 Toxicological Research Toxicological Research Vol.32 No.4
발행연도
2016.10
수록면
337 - 343 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
We determined the toxicity of mixtures of ethyl acetate (EA), isopropyl alcohol (IPA), methyl ethyl ketone (MEK), toluene (TOL) and xylene (XYL) with half-maximal effective concentration (EC<SUB>50</SUB>) values obtained using human hepatocytes cells. According to these data, quantitative property-activity relationships (QPAR) models were successfully proposed to predict the toxicity of mixtures by multiple linear regressions (MLR). The leave-one-out cross validation method was used to find the best subsets of descriptors in the learning methods. Significant differences in physico-chemical properties such as boiling point (BP), specific gravity (SG), Reid vapor pressure (rVP) and flash point (FP) were observed between the single substances and the mixtures. The EC<SUB>50</SUB> of the mixture of EA and IPA was significantly lower than that of contained TOL and XYL. The mixture toxicity was related to the mixing ratio of MEK, TOL and XYL (MLR equation EC<SUB>50</SUB> = 3.3081 - 2.5018 × TOL - 3.2595 × XYL − 12.6596 × MEK × XYL), as well as to BP, SG, VP and FP (MLR equation EC<SUB>50</SUB> = 1.3424 + 6.2250 × FP - 7.1198 × SG × FP - 0.03013 × rVP × FP). These results suggest that QPAR-based models could accurately predict the toxicity of polar and nonpolar mixtures used in rotogravure printing industries.

목차

INTRODUCTION
MATERIALS AND METHODS
RESULTS
DISCUSSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-513-001339603