메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이윤진 (홍익대학교)
저널정보
한국색채학회 한국색채학회논문집 한국색채학회논문집 제30권 제4호(통권 제72호)
발행연도
2016.11
수록면
77 - 87 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The purpose of this study is to find the relation between psychological metric quantities of two-color combinations and the axes of “warm-cool” and “soft-hard” on the image scale. Thirty six observers subjectively evaluated one hundred two color pairs on <warm-cool> and <soft-hard> scales. The psychological metric quantities were calculated from CIELAB values of three constituents of a combination. These values are the mean of lightness, the mean of chroma, and the mean of hue angle, as well as the difference in lightness, the difference in chroma, and the difference in hue. A multiple regression analysis was performed to find the relation of these quantities with the image scale. The results, prediction equations of “warm-cool” and “soft-hard” were derived respectively. The “warm-cool” image has the strongest relation with the difference in hue. When the difference in hue becomes larger, the image of color combinations becomes warmer. While the difference in hue becomes smaller the image becomes cooler. On the other hand, the “soft-hard” image has the strongest relation with the mean of lightness. When the mean of lightness becomes higher, the image becomes softer. While the mean of lightness becomes lower the image becomes harder. The result of fitness evaluation shows that the prediction equations of “warm-cool” and “soft-hard” have good performance for establishing quantitative color combination image scale. It will be useful both for color design and for color analysis.

목차

Abstract
1. Introduction
2. Subjective Evaluation Experiment
3. Results of Subjective Evaluation Experiment
4. Prediction Equations for “Warm-Cool” and “Soft-Hard”
5. Conclusion and Proposal
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-651-001858979