메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
파스 빅토리아 (연세대학교) 이연숙 (연세대학교) 전은정 (연세대학교)
저널정보
한국실내디자인학회 한국실내디자인학회 학술대회논문집 한국실내디자인학회 2017년도 춘계학술발표대회 논문집
발행연도
2017.5
수록면
306 - 310 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The rapid economic growth in the late years has helped improve quality of life of our modern society but at the same time it carries together phenomena product of economic and urban development like declining birth rate, super aging population, which are becoming a serious concern for the future. Among the diverse counter-strategies to employ to prepare for the future, community planning introduces a way to regenerate or revitalize deteriorated areas by promoting mixed communities of senior citizens along households with children and students living in a multi generational co existence. The purpose of this research is to extract successful features and useful implications shown in a supportive-housing community village, Share Kanazawa, located in a rural area 3 hours away from Tokyo, Japan. This research employed case study methods, with field visit and in-depth interviews for data collection and literature research & contents analysis. The results found and the data collected were based on analyzed concepts like social integration, resident participation, design innovation, and other characteristics. Share Kanazawa is considered as an innovative practice due to its uniqueness and quality approach towards sustainable community regeneration through the development of affordable housing strategy subsidized by the Japanese Government. This development is to set an example because of its characteristics & design features, the promotion of sustainable communities, and the possibility to translocate as a potential model into Korea"s future development of housing welfare.

목차

Abstract
1. 서론
2. 문헌고찰
3. 쉐어가나자와 사례분석 결과
4. 결론 및 제언
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-619-000791168