메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
고은정 (광운대학교) 김호준 (광운대학교) 박효주 (광운대학교) 전영호 (SK 하이닉스) 이기훈 (광운대학교) 신사임 (전자부품연구원)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제20권 제9호
발행연도
2017.9
수록면
1,541 - 1,550 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
The increasing number of multimedia content offered to the user demands content recommendation. In this paper, we propose a system for recommending content related to the content that user is watching. In the proposed system, relationship information between content is generated using relationship information between representative keywords of content. Relationship information between keywords is generated by analyzing keyword collocation frequencies in Internet news corpus. In order to handle big corpus data, we design an architecture that consists of a distributed search engine and a distributed data processing engine. Furthermore, we store relationship information between keywords and relationship information between keywords and content in NoSQL to handle big relationship data. Because the query optimizer of NoSQL is not as well developed as RDBMS, we propose query optimization techniques to efficiently process complex queries for recommendation. Experimental results show that the performance is improved by up to 69 times by using the proposed techniques, especially when the number of requested related keywords is small.

목차

ABSTRACT
1. 서론
2. 관련 연구
3. 연관 콘텐츠 추천 시스템
4. 성능 평가
5. 결론
REFERENCE

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0