메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
조성은 (고려대학교)
저널정보
한국디지털콘텐츠학회 디지털콘텐츠학회논문지 디지털콘텐츠학회논문지 제19권 제4호
발행연도
2018.4
수록면
731 - 737 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
추천 시스템은 컨텐츠, 온라인 커머스, 소셜 네트워크, 광고 시스템 등 많은 분야에서 사용자가 관심 있을 만한 정보를 선별 제안함을 목적으로 활발하게 연구되고 있다. 그러나 과거 선호도 데이터를 기반으로 제안하는 추천시스템이 많고 과거 데이터가 적거나 없는 사용자를 대상으로는 제공하기 어려우므로 낮은 성능을 보인다는 부문에서 문제점이 있다. 따라서 더욱 고차원적인 데이터 분석에 관한 관심이 증가하고 있고 Matrix Factorization이 주목받고 있다. 이 논문은 그 중 추천시스템에서 주목받는 Factorization Machines Learning(FM)모델과 고차원 데이터 분석인 High-order Factorization Machines Learning(HOFM)의 비교와 재연을 연구하고 제안 한다.

목차

[요약]
[Abstract]
Ⅰ. 서론
Ⅱ. 관련연구
Ⅲ. 제3장 연구방법 및 모형
Ⅳ. 제4장 실험 및 결과
Ⅴ. 결론
참고문헌

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-002043224