메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정승윤 (고려대학교) 김형중 (고려대학교)
저널정보
한국디지털콘텐츠학회 디지털콘텐츠학회논문지 디지털콘텐츠학회논문지 제18권 제4호
발행연도
2017.7
수록면
707 - 712 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
데이터의 양이 기하급수적으로 증가함에 따라 추천 시스템(recommender system)은 영화, 도서, 음악 등 다양한 산업에서 관심을 받고 있고 연구 대상이 되고 있다. 추천시스템은 사용자들의 과거 선호도 및 클릭스트림(click stream)을 바탕으로 사용자에게 적절한 아이템을 제안하는 것을 목적으로 한다. 대표적인 예로 넷플릭스의 영화 추천 시스템, 아마존의 도서 추천 시스템 등이 있다. 기존의 선행 연구는 협업적 여과, 내용 기반 추천, 혼합 방식의 3가지 방식으로 크게 분류할 수 있다. 하지만 기존의 추천 시스템은 희소성(sparsity), 콜드스타트(cold start), 확장성(scalability) 문제 등의 단점들이 있다. 이러한 단점들을 개선하고 보다 정확도가 높은 추천 시스템을 개발하기 위해 실제 온라인 기업의 상품구매 데이터를 이용해 factorization machine으로 추천시스템을 설계했다.

목차

[요약]
[Abstract]
Ⅰ. 서론
Ⅱ. 관련연구
Ⅲ. 연구방법 및 모델
Ⅳ. 실험 및 결과
Ⅴ. 결론
참고문헌

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-001168231