메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hayoung Oh (아주대학교) EunHee Goo (아주대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제27권 제6호
발행연도
2017.12
수록면
1,499 - 1,506 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
스마트폰의 사용 및 다양한 앱 들의 출시 등이 기하급수적으로 증가되면서 악성 앱 또한 동시에 증가됐다. 기존의 앱 추천 시스템들은 온라인상에서 보이는 다른 사용자들의 평점, 댓글 및 인기 카테고리 등의 정적인 정보 분석을 기반으로만 동작한다는 한계가 있었다. 본 논문에서는 처음으로 스마트폰에서 실제로 사용되는 앱의 동적인 정보들을 현실적으로 사용하여 정적인 정보와 동적인 정보를 동시에 고려하는 견고한 앱 추천 시스템을 제안한다. 즉, 본 논문에서는 앱의 사용되는 시간, 앱의 사용 빈도수 및 앱과 앱 간의 상호 작용과 안드로이드 커널과의 접촉 횟수 등을 측정 가능한 수준에서 부분적으로 반영하여 견고한 안드로이드 앱 추천 시스템을 제안한다. 성능평가 결과 제안하는 기법이 견고하고 효율적인 앱 추천 시스템임을 증명했다.

목차

요약
ABSTRACT
I. Introduction
II. Proposed Scheme
III. Theoretical Analysis
IV. Performance Evaluation
V. Conclusion
References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-001716099