메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김태형 (경북대학교) 노윤석 (경북대학교) 박성배 (경희대학교) 박세영 (경북대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.45 No.6
발행연도
2018.6
수록면
572 - 581 (10page)
DOI
10.5626/JOK.2018.45.6.572

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
대화 시스템은 입력 발화에 대해 적절한 응답을 해주는 시스템으로 최근에는 대화 모델 학습에 딥러닝 방식의 시퀀스-투-시퀀스 모델을 많이 이용한다. 하지만 해당 방식으로 학습한 대화 모델은 적절한 정보나 호응을 보이지 않는 안전하고 무미건조한 응답을 생성하거나 어미, 어순 변화 등 다양한 형태로 변형된 입력 발화에 대해 적절한 응답을 생성하지 못하는 문제가 있다. 본 논문에서는 이를 해결하기 위해 디노이징 메커니즘을 적용한 디노이징 응답 생성 모델을 제안한다. 제안 모델은 입력 발화에 임의의 노이즈를 가해 원래의 출력을 학습함으로써 매 반복 학습마다 확률적으로 새로운 입력 데이터를 경험하게 한다. 이를 통해 모델을 정규화하여 모델이 강건한 응답을 생성할 수 있도록 한다. 제안하는 방법의 우수성을 보이기 위해 9만 건의 한국어 대화 데이터로 실험을 수행하였다. 실험 결과 제안하는 방법이 비교 모델보다 ROUGE F1 점수와 사람이 평가한 정성 평가 모두에서 더 우수한 결과를 보였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 디노이징 응답 생성 모델
4 실험 및 평가
5. 결론
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0