메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kook Cho (Dong-A University) Woong-Gon Kim (Gyeongin Regional Statistics Office) Hyeon Kang (Dong-A University) Gyung-Seung Yang (Ubicod Company) Hyun-Woo Kim (Hanyang University) Ji-Eun Jeong (Dong-A University) Hyun-Jin Yoon (Dong-A University) Young-Jin Jeong (Dong-A University) Do-Young Kang (Dong-A University)
저널정보
대한의생명과학회 대한의생명과학회지 대한의생명과학회지 제25권 제1호
발행연도
2019.3
수록면
99 - 106 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Amyloid positron emission tomography (PET) allows early and accurate diagnosis in suspected cases of Alzheimer"s disease (AD) and contributes to future treatment plans. In the present study, a method of implementing a diagnostic system to distinguish β-Amyloid (Aβ) positive from Aβ negative with objectiveness and accuracy was proposed using a machine learning approach, such as the Principal Component Analysis (PCA) and Support Vector Machine (SVM). <SUP>18</SUP>F-Florbetaben (FBB) brain PET images were arranged in control and patients (total n = 176) with mild cognitive impairment and AD. An SVM was used to classify the slices of registered PET image using PET template, and a system was created to diagnose patients comprehensively from the output of the trained model. To compare the per-slice classification, the PCA-SVM model observing the whole brain (WB) region showed the highest performance (accuracy 92.38, specificity 92.87, sensitivity 92.87), followed by SVM with gray matter masking (GMM) (accuracy 92.22, specificity 92.13, sensitivity 92.28) for Aβ positivity. To compare according to per-subject classification, the PCA-SVM with WB also showed the highest performance (accuracy 89.21, specificity 71.67, sensitivity 98.28), followed by PCA-SVM with GMM (accuracy 85.80, specificity 61.67, sensitivity 98.28) for Aβ positivity. When comparing the area under curve (AUC), PCA-SVM with WB was the highest for per-slice classifiers (0.992), and the models except for SVM with WM were highest for the per-subject classifier (1.000). We can classify <SUP>18</SUP>F-Florbetaben amyloid brain PET image for Aβ positivity using PCA-SVM model, with no additional effects on GMM.

목차

INTRODUCTION
MATERIALS AND METHODS
RESULTS
DISCUSSION
CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-510-000546381