메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국유통과학회 유통과학연구 유통과학연구 제16권 제6호
발행연도
2018.1
수록면
25 - 35 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose - Although marketing networks are crucial competitive advantage in terms of firm’s new information and resource acquisition ability, their impact on new product development performance remains vague, especially under environmental uncertainty. The principal objective of this research is to provide a better understanding of effects of technological uncertainty and volume uncertainty on first tier supplier’s perceived performance of new product development under conditions reflecting varying levels of structural holes. Specifically, this research examines the moderating effect of structural holes on the relationship between environmental uncertainty and new product development performance. Research design, data, and methodology – To test the hypotheses, a questionnaire survey was conducted with a Korean engineering firm’s major first-tier suppliers in the context of internal network entities, manufacturer-supplier-subsupplier relationships, and to verify the proposed hypotheses, structural equation modeling was established. Construct measures were based on existing measures and previous research. Results – The survey results indicate that technological uncertainty and volume uncertainty differentially affect NPD performance under conditions of high and low structural holes. Conclusions – This study offer some theoretical and practical implications among distribution channel members, especially, this study suggests that interfirm networks have critical competitive advantage in uncertain environments. The distinctiveness of engineering industry might limit the generalizability of the results. Thus, future research should consider a wider range of industries.

목차

등록된 정보가 없습니다.

참고문헌 (66)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0