메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background and Purpose We developed a novel method named Gray-matter Volume Estimate Score (GRAVES), measuring early ischemic changes on Computed Tomography (CT) semi-automatically by computer software. This study aimed to compare GRAVES and Alberta Stroke Program Early CT Score (ASPECTS) with regards to outcome prediction and inter-rater agreement. Methods This was a retrospective cohort study. Among consecutive patients with ischemic stroke in the anterior circulation who received intra-arterial therapy (IAT), those with a readable pretreatment CT were included. Two stroke neurologists independently measured both the GRAVES and ASPECTS. GRAVES was defined as the percentage of estimated hypodense lesion in the gray matter of the ipsilateral hemisphere. Spearman correlation analysis, receiver operating characteristic (ROC) comparison test, and intra-class correlation coefficient (ICC) comparison tests were performed between GRAVES and ASPECTS. Results Ninety-four subjects (age: 68.7±10.3; male: 54 [54.9%]) were enrolled. The mean GRAVES was 9.0±8.9 and the median ASPECTS was 8 (interquartile range, 6-9). Correlation between ASPECTS and GRAVES was good (Spearman’s rank correlation coefficient, 0.642; P<0.001). ROC comparison analysis showed that the predictive value of GRAVES for favorable outcome was not significantly different from that of ASPECTS (area under curve, 0.765 vs. 0.717; P=0.308). ICC comparison analysis revealed that inter-rater agreement of GRAVES was significantly better than that of ASPECTS (0.978 vs. 0.895; P<0.001). Conclusions GRAVES had a good correlation with ASPECTS. GRAVES was as good as ASPECTS in predicting a favorable clinical outcome, but was better than ASPECTS regarding inter-rater agreement. GRAVES may be used to predict the outcome of IAT.

목차

등록된 정보가 없습니다.

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0