메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한예방의학회 예방의학회지 예방의학회지 제50권 제1호
발행연도
2017.1
수록면
29 - 37 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: The accurate measurement of geographic patterns of health care utilization is a prerequisite for the study of geographic variations in health care utilization. While several measures have been developed to measure how accurately geographic units reflect the health care utilization patterns of residents, they have been only applied to hospitalization and need further evaluation. This study aimed to evaluate geographic indices describing health care utilization. Methods: We measured the utilization rate and four health care utilization indices (localization index, outflow index, inflow index, and net patient flow) for eight major procedures (coronary artery bypass graft surgery, percutaneous transluminal coronary angioplasty, surgery after hip fracture, knee replacement surgery, caesarean sections, hysterectomy, computed tomography scans, and magnetic resonance imaging scans) according to three levels of geographic units in Korea. Data were obtained from the National Health Insurance database in Korea. We evaluated the associations among the health care utilization indices and the utilization rates. Results: In higher-level geographic units, the localization index tended to be high, while the inflow index and outflow index were lower. The indices showed different patterns depending on the procedure. A strong negative correlation between the localization index and the outflow index was observed for all procedures. Net patient flow showed a moderate positive correlation with the localization index and the inflow index. Conclusions: Health care utilization indices can be used as a proxy to describe the utilization pattern of a procedure in a geographic unit.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0