메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ki Hong Kim (Korea National Open University) Kwanyong Lee (Korea National Open University)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.13 No.3
발행연도
2019.9
수록면
89 - 98 (10page)
DOI
10.5626/JCSE.2019.13.3.89

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
When traveling on a tour bus, the seat one chooses for viewing scenery is one of the main factors affecting one’s enjoyment of a trip. However, such scenery information is not available in advance. Therefore, it is necessary to predict the scenery for a tour bus route. In previous research, such predictions have been attempted through machine learning. However, the prediction result has only informed users about which direction is best, not about how good that direction is. Moreover, no information was given about sunlight, which can also affect the viewing of scenery. Therefore, in this paper, we propose the Beautiful Scenery & Cool Shade system that quantifies the information about scenery and sunlight in four directions using deep learning and the azimuth theory. More specifically, we used ResNet-152, DenseNet-161, and Inception v3 for the prediction, and we used Google Street View for the input data. After building the system, we tested its applications to two existing tour bus routes. The results showed that our system outperformed the previous system. The proposed system allows tourists to make satisfactory travel plans and allows tour companies to develop more valuable tour services, ultimately contributing to the development of the global tourism industry.

목차

Abstract
I. INTRODUCTION
II. BSCS SYSTEM
III. EXPERIMENTS
IV. CONCLUSION
REFERENCES

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0