메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
배성호 (광운대학교) 구자일 (육군사관학교) 박찬봉 (광운대학교) 김정수 (광운대학교)
저널정보
육군사관학교 화랑대연구소 한국군사학논집 한국군사학논집 제76권 제2호
발행연도
2020.6
수록면
181 - 216 (36page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Within the military art and science research articles, many of studies have focused on the empirical examination or theoretically review interests related to military phenomena (e.g., military power, security relations). Furthermore, because the technological and social change in recent years have spurred convergence and generalization research in Korean military art and science, multidisciplinary research related to science and technology and various disciplines is emphasized as well as social science that studies military issues. In this sense, to maintain sustainable development of current research, it is necessary to explore specific topics on academic studies.
To accomplish this purpose, we conducted a sequence of three analytic stages. First, we selected a web database in KCI OAI-PMH (Korea Citation Index Open Archives Initiative Protocol for Metadata Harvesting) for literature search. And then we performed subsequently snowballing sampling via author affiliation and related-keywords (i.e., military, defense, weapon etc.) of reference list based on initial DB search to find comprehensive articles from relevant studies. It comprised data sets including English Abstract from a total of 4,193 studies (314 journals) during 2002-2019. Second, using these data sets, we extracted token, lemma, and morphological features of potentially useful NOUN by employing Universal Dependencies (UD) pipeline for joint sentence segmentation, word segmentation. Third, based on the topic modeling using topicmodels, OpTop, and topicdoc package with Latent Dirichlet Allocation (LDA) algorithms on this corpus, we presented new subject classification including ten topics (i.e., Defense Reform, security alliance, defense industry, defense R&D, combat simulation, dynamic analysis of weapon systems, reliability evaluation of weapon system, target detection, characteristics analysis of materials or performance). As a result, the current study explored latent topic cluster (subject classification) was divided into 1) weapon system acquisition and management (military force building and intangible force maintenance) and 2) defense R&D (military force operation, military force development, tangible force maintenance) based on the topic network analysis.
These findings are preliminary, but it enhances our understanding of the existing sub-subject areas by extending subject classification for military art and science in the Knowledge Classification Scheme of National Research Foundations of Korea.

목차

ABSTRACT
Ⅰ. 서론
Ⅱ. 선행연구 고찰
Ⅲ. 연구방법
Ⅳ. 분석결과
Ⅴ. 결론 및 제언
참고문헌

참고문헌 (169)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-039-000900604