메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background/Aims: Microvascular invasion (MVI) is an established risk factor for hepatocellular carcinoma (HCC). However, prediction models that specifically focus on the individual prognoses of HCC patients with MVI is lacking. Methods: A total of 385 HCC patients with MVI were randomly assigned to training and validation cohorts in a 2:1 ratio. The outcomes were disease-free survival (DFS) and overall survival (OS). Prognostic nomograms were established based on the results of multivariate analyses. The concordance index (C-index), calibration plots and Kaplan-Meier curves were employed to evaluate the accuracy, calibration and discriminatory ability of the models. Results: The independent risk factors for both DFS and OS included age, tumor size, tumor number, the presence of gross vascular invasion, and the presence of Glisson’s capsule invasion. The platelet-tolymphocyte ratio was another risk factor for OS. On the basis of these predictors, two nomograms for DFS and OS were constructed. The C-index values of the nomograms for DFS and OS were 0.712 (95% confidence interval [CI], 0.679 to 0.745; p<0.001) and 0.698 (95% CI, 0.657 to 0.739; p<0.001), respectively, in the training cohort and 0.704 (95% CI, 0.650 to 0.708; p<0.001) and 0.673 (95% CI, 0.607 to 0.739; p<0.001), respectively, in the validation cohort. The calibration curves showed optimal agreement between the predicted and observed survival rates. The Kaplan-Meier curves suggested that these two nomograms had satisfactory discriminatory abilities. Conclusions: These novel predictive models have satisfactory accuracy and discriminatory abilities in predicting the prognosis of HCC patients with MVI after hepatectomy.

목차

등록된 정보가 없습니다.

참고문헌 (63)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0