메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
나경민 (서울대 대학원 전자공학과)
저널정보
한국음향학회 한국음향학회 워크샵 한국음향학회 1994년도 제11회 음성통신 및 신호처리 워크샵 논문집 (SCAS 11권 1호)
발행연도
1994.1
수록면
166 - 171 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (6)

초록· 키워드

오류제보하기
기존의 음성인식기들은 일반적으로 간단하면서도 성능이 우수한 계층별 학습에 의해서 설계된다. 계층별 학습은 통계적 패턴인식에서의 ML 추정기법처럼 모델간의 독립성이 보장되고 무한한 양의 학습데이타가 주어진다는 가정에 기초하고 있다. 그러나, 대상어휘집합에 음운학적으로 유사한 어휘가 많이 포함되어 있는 인식문제에 있어서는 모델간의 독립성이 보장되지 못하고, 실제 주어지는 grktmqepdlk의 양도 제한되므로 기존의 합습알고리즘에는 한계가 있다. 따라서 본 논문에서는 그러한 가정상의 문제점으로 생기는 인식기의 성능저하를 개선할 수 있는 변별력 있는 학습알고리즘들을 검토하고 그의 일반적인 접근방법들에 대해서 논의한다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0