메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이승수 (APEC 기후센터) 김가영 (APEC 기후센터) 윤순조 (APEC 기후센터) 안현욱 (충남대학교 지역환경토목학과)
저널정보
한국수자원학회 한국수자원학회논문집 한국수자원학회논문집 제52권 제7호
발행연도
2019.1
수록면
475 - 482 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
2주에서 2개월까지 선행기간을 가지는 계절내-계절(Subseasonal-to-Seasonal, S2S) 예측결과는 산업전반에 걸쳐 다양한 분야에 활용이 가능할 것으로 기대되고 있으나, 일기예보나 중장기 예보대비 낮은 예측성으로 인하여 현재까지 활용성이 매우 낮은 실정이다. 본 연구에서는 기계학습 기법중 비선형회귀 분야에서 좋은 결과를 보여주는 다층퍼셉트론 기법을 이용하여 S2S 예측자료의 후처리를 통한 국내 영역에서의 강수예측성 향상에 관한 연구를 수행하였다. 후처리 모형의 학습을 위한 입력자료로는 ECMWF의 S2S 과거예측(Hindcast) 정보를 이용하였으며 양분예보기법에 기반하여 학습된 다층퍼셉트론 모델을 이용한 후처리 결과와의 비교 분석이 수행되었다. 비교분석 결과 편차도(Bias score)는 평균 59.7% 감소하였고, 정확도(Accuracy)는 124.3% 증가하였으며, 임계성공지수(Critical Success Index)는 88.5% 향상된 것으로 분석되었다. 탐지확률(Probability of detection)의 경우 원자료 대비 평균 9.5% 감소하였으나 이는 ECMWF의 예측모델이 강수의 발생일을 과도하게 예측하였기 때문인 것으로 분석되었다. 본 연구 수행 결과 비록 ECMWF의 S2S 예측자료의 예측성이 낮더라도 후처리를 통해 예측성을 향상 시킬 수 있음을 확인하였으며, 본 연구 결과는 향후 수자원과 농업 분야에서 S2S 자료의 활용성을 높이는데 도움이 될 수 있을 것으로 판단된다.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0