메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이경훈 (충남대학교 컴퓨터공학과) 조제일 (국방과학연구소 제2기술연구본부) 박정희 (충남대학교 컴퓨터공학과)
저널정보
한국군사과학기술학회 한국군사과학기술학회지 한국군사과학기술학회지 제22권 제2호
발행연도
2019.1
수록면
278 - 286 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Conventional methods for selecting jamming techniques in electronic warfare are based on libraries in which a list of jamming techniques for radar signals is recorded. However, the choice of jamming techniques by the library is limited when modified signals are received. In this paper, we propose a method to predict the jamming technique for radar signals by using deep learning methods. Long short-term memory(LSTM) is a deep running method which is effective for learning the time dependent relationship in sequential data. In order to determine the optimal LSTM model structure for jamming technique prediction, we test the learning parameter values that should be selected, such as the number of LSTM layers, the number of fully-connected layers, optimization methods, the size of the mini batch, and dropout ratio. Experimental results demonstrate the competent performance of the LSTM model in predicting the jamming technique for radar signals.

목차

등록된 정보가 없습니다.

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0