메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Ju, Young Min (Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science) Ahn, Byung-Jun (Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science) Lee, Jaejung (Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science)
저널정보
한국목재공학회 목재공학(Journal of the Korean Wood Science and Technology) 목재공학 제44권 제6호
발행연도
2016.1
수록면
864 - 871 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study was conducted to compare and analyze gross calorific values from measurement methods of lignocellulosic biomass and calculation data from calorific value prediction models based on the elemental content. The deviation of Liriodendron tulipifera (LT) and Populus euramericana (PE) was shown 7.7 cal/g and 7.4 cal/g respectively in palletization method, which are within repeatability limit 28.8 cal/g of ISO FDIS 18125. In the case of Thailand charcoal (TC), nontreatment method and palletization method was satisfied with repeatability limit as 22.8 cal/g and 8.8 cal/g respectively. Seowon charcoal (SC) was shown deviation of 11.4 cal/g in nontreatment method, because the density and chemical affinity of sample increases as the carbon content increases from heat treatment at high temperature in the case of TC and SC. In addition, after applying the elemental content of each of these samples to the calorific value prediction models, the study found that Model Equation (3) was relatively consistent with measured calorific values of all these lignocellulosic biomass. Thus, study about the correlation between the density and size of particle should be conducted in order to select the measurement method for a wide range of solid biofuels in the future.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0