메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Seungsoo Lee (Korea Environmental Institute) Hyunuk An (Chungnam National University) Yeonsu Kim (K-water Research Institute) Young-Teck Hur (K-water Research Institute) Daeeop Lee (Kyungpook National University)
저널정보
충남대학교 농업과학연구소 Korean Journal of Agricultural Science Korean Journal of Agricultural Science Vol.47 No.3
발행연도
2020.9
수록면
509 - 517 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Geographic information system (GIS) sewer network data are a fundamental input material for urban inundation modeling, which is important to reduce the increasing damages from urban inundation due to climate change. However, the essential attributes of the data built by a local government are often missing because the purpose of building the data is the maintenance of the sewer system. Inconsistent simplification and supplementation of the sewer network data made by individual researchers may increase the uncertainty of flood simulations and influence the inundation analysis results. Therefore, it is necessary to develop a basic algorithm to convert the GIS-based sewage network data into input data that can be used for inundation simulations in consistent way. In this study, the format of GIS-based sewer network data for a watershed near the Sadang Station in Seoul and the Oncheon River Basin in Busan was investigated, and a missing data supplementing algorithm was developed. The missing data such as diameter, location, elevation of pipes and manholes were assumed following a consistent rule, which was developed referring to government documents, previous studies, and average data. The developed algorithm will contribute to minimizing the uncertainty of sewer network data in an urban inundation analysis by excluding the subjective judgment of individual researchers.

목차

Abstract
Introduction
Materials and Methods
Results and Discussion
Conclusion
References

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0