메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hwunjae Lee (Yonsei University) Hyun-Ouk Kim (Kangwon National University) Yong-Min Huh (Yonsei University)
저널정보
한국자기학회 Journal of Magnetics Journal of Magnetics Vol.25 No.4
발행연도
2020.12
수록면
567 - 576 (10page)
DOI
10.4283/JMAG.2020.25.4.567

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Several recently developed technologies for molecular imaging have been applied to magnetic resonance (MR) imaging for cancer. In particular, various MR sequences with biocompatible polymer-based magnetic nanoparticles (pMNPs) have been applied for the MR imaging of cancer. However, there are several limitations to this approach, and passive contrast agents are not yet sufficiently targeted. This is a particular challenge for gastric cancer owing to the interference from stomach contents. Therefore, in this study we developed targeting contrast agent and assessed its feasibility for early gastric cancer diagnosis using a mouse model. Specifically, we synthesized pMNPs, which enable both T2-weighted (T2) and ultra-short TE (UTE) MR imaging using hyaluronic acid as the polymer, which binds to the receptor CD44, a recently identified biomarker of gastric cancer. Both MR sequences (T2, UTE) were analyzed with respect to imaging effects and targeting to the pMNPs. In vitro assessments showed no significant cytotoxicity of the pMNPs to MKN-45 and MKN-28 cells and confirmed the cellular uptake of the pMNPs. MR signal enhancement was identified after pMNPs injection to the mice, and the pMNPs gradually accumulated in the tumors. Based on the results, we suggest that pMNPs serve as useful probes for imaging stem-like cancer cells, and can further provide new possibilities by simultaneously confirming T1 and T2 MR imaging effects.

목차

1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusion
References

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0