메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김수열 (경북대학교) 김익진 (경북대학교) 이용찬 (경북대학교) 이연정 (경북대학교)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제70권 제1호
발행연도
2021.1
수록면
190 - 200 (11page)
DOI
10.5370/KIEE.2021.70.1.190

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we propose a new hand gesture recognition strategy using network-based transfer learning(TL) and reference voluntary contraction(RVC) normalization. The structure and parameters of the state-of-the-art deep learning models such as VGG19, ResNet152 and DenseNet121 for source task of image classification are reused in the target task of hand gesture recognition based on surface electromyography(EMG) signals. To mitigate the difficulty in handling the subject-dependent EMG signals, the RVC normalization is adopted in the signal pre-processing. The time-domain EMG signals are transformed into 2-D images for TL networks. The experimental results verify the validity of the proposed method in terms of recognition accuracy. The TL using VGG19, RVC normalization and gray image transformation shows 99.78% accuracy for the data from 15 participants performing 20 different gestures.

목차

Abstract
1. 서론
2. 표면근전도 및 손동작 데이터베이스
3. 근전도 신호의 전처리 및 RVC 정규화
4. 실험 결과 및 고찰
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-560-001427424