메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
추헌정 (현대모비스)
저널정보
한국자동차공학회 한국자동차공학회 추계학술대회 및 전시회 2020년 한국자동차공학회 추계학술대회 및 전시회
발행연도
2020.11
수록면
526 - 532 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Global Automobile Manufacturers have been trying to reach their ADAS phase mount up to Lv5. Taking advantage of Deep Neural Network(DNN) for Autonomous Driving is the state of the art trend in this field. Retaining data, with diverse and enormous volumes, is an overriding factor in developing a self-driving algorithm. Not only acquiring numerous data but also conducting tests in diverse circumstances also a crucial factor for driverless vehicle logic. The actual verification test has been executed in some constrained conditions which lead to the lack of driving performance warranty. Because none of the evaluations satisfy all kinds of each functional requirement. Additionally, some even safety evaluations, along with the possibility of crash accident or unexpected driving situations need to be proved in the autonomous driving test, might have the victims or serious damages to the driver. Also, it is laborious to get the repeatability of assessment surroundings in some particular evaluations conducted ever before. A Virtual driving procedure might be one of the solutions that dealt with these faults. Without any hazardous or arduous efforts to realize similar to real driving environments, artificial methods can cope with the functional requirements. Image recognition is a dominant element in judging the overall outcome of an autonomous driving algorithm as well, the feasibility of exploiting synthetic image is explored in this study.

목차

Abstract
1. 서론
2. 본론
3. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0