메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
권혜진 (경성대학교) 김학선 (경성대학교)
저널정보
한국조리학회 Culinary Science & Hospitality Research Culinary Science & Hospitality Research Vol.27 No.3(Wn.128)
발행연도
2021.3
수록면
1 - 14 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Big data is a concept formed during the Fourth Industrial Revolution and is based on highly advanced information and communication technologies including artificial intelligence and the internet of things. The use of vast amounts of big data generated by convergence with other industries emerging as a very important challenge in this time. This study aimed at understanding trends of big data studies and deriving implications for directions of the studies by utilizing text mining. For this purpose, this study included topic modeling and semantic network analysis based between January 1, 2016 and December 31, 2020, investigated in ordet to examine various characteristics and development of big data studies. As a topic modeling and semantic network analysis tool, NetMiner 4.4.3.e program, which is widely used in social network analysis, was used. The findings of the study show that big data related studies has been steadily increasing, and big data has been actively conducted mainly on technical methods. 9 topics related to protection of personal information, analyze consumer factor, analysis of healthcare and children education by group, utilize system processing and information, topic and network analysis in education, regional tourism image analysis, semantic network analysis using key word, policy analysis technology in the industrial field and analysis news articles key word were created.

목차

ABSTRACT
1. 서론
2. 이론적 배경
3. 연구방법
4. 분석결과
5. 결론
REFERENCES

참고문헌 (45)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-594-001622636