메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
유병준 (충북대학교) 기석철 (충북대학교)
저널정보
한국자동차공학회 한국자동차공학회논문집 한국자동차공학회논문집 제29권 제9호
발행연도
2021.9
수록면
803 - 809 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In an automated driving system, recognizing range information is essential in order to understand the surrounding environment. As a result, we proposed depth completion method, filling the area with depth information of point cloud, which is projected onto the image plane, and high resolution color data from the image. The projected point cloud is placed into the shift-convolution network which expands received sparse LiDAR data to the pixel level, and then it is inserted synchronously into the convolutional neuron network(CNN) with image. Fully completed ground truth is formed by using max and median filters sequentially, and it is taken as input of shift-convolution to make an expanded point cloud that focuses more on completing an empty area than section the contour off. Finally, CNN uses point cloud to get the exact depth information and image for separating objects along the outline. The system that uses expanded point cloud has approved almost 9 % more than the system that does not.

목차

Abstract
1. 서론
2. Point Cloud 데이터 구성
3. 제안하는 알고리즘
4. 실험방법 및 결과
5. 결론
References

참고문헌 (5)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0