메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김우림 (충북대학교 약학대학) 한지민 (충북대학교) 이경은 (충북대학교)
저널정보
한국임상약학회 한국임상약학회지 한국임상약학회지 제30권 제3호
발행연도
2020.1
수록면
169 - 176 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: Most meta-analyses of risk factors for severe or critical outcomes in patients with COVID-19 only included studies conducted in China and this causes difficulties in generalization. Therefore, this study aimed to systematically evaluate the risk factors in patients with COVID-19 from various countries. Methods: PubMed, Embase, and Web of Science were searched for studies published on the mortality risk in patients with COVID-19 from January 1 to May 7, 2020. Pooled estimates were calculated as odds ratio (OR) with 95% confidence interval (CI) using the random-effects model. Results: We analyzed data from seven studies involving 26,542 patients in total in this systematic review and meta-analysis. Among the patients, 2,337 deaths were recorded (8.8%). Elderly patients and males showed significantly higher mortality rates than young patients and females; the OR values were 3.6 (95% CI 2.5-5.1) and 1.2 (95% CI 1.0-1.3), respectively. Among comorbidities, hypertension (OR 2.3, 95% CI 1.1-4.6), diabetes (OR 2.2, 95% CI 1.2-3.9), cardiovascular disease (OR 3.1, 95% CI 1.5-6.3), chronic obstructive pulmonary disease (OR 4.4, 95% CI 1.7-11.5), and chronic kidney disease (OR 4.2, 95% CI 2.0-8.6) were significantly associated with increased mortalities. Conclusion: This meta-analysis, involving a huge global sample, employed a systematic method for synthesizing quantitative results of studies on the risk factors for mortality in patients with COVID-19. It is helpful for clinicians to identify patients with poor prognosis and improve the allocation of health resources to patients who need them most.

목차

등록된 정보가 없습니다.

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0