메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Hyung-Jo Jung (Korea Advanced Institute of Science and Technology) Jin Hwan Lee (Korea Advanced Institute of Science and Technology) Sungsik Yoon (University of Illinois at Urbana-Champaign) Byunghyun Kim (University of Seoul) Gi-Hun Gwon (Korea Advanced Institute of Science and Technology) In-Ho Kim (Kunsan National University)
저널정보
국제구조공학회 Smart Structures and Systems, An International Journal Smart Structures and Systems, An International Journal Vol.27 No.2
발행연도
2021.1
수록면
209 - 226 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper proposes a new methodology to address the image quality problem encountered as the use of an unmanned aerial vehicle (UAV) in the field of bridge inspection increased. When inspecting a bridge, the image obtained from the UAV was degraded by various interference factors such as vibration, wind, and motion of UAV. Image quality degradation such as blur, noise, and low-resolution is a major obstacle in utilizing bridge inspection technology based on UAV. In particular, in the field of bridge inspection where damages must be accurately and quickly detected based on data obtained from UAV, these quality issues weaken the advantage of using UAVs by requiring re-take of images through re-flighting. Therefore, in this study, image quality assessment (IQA) based on local blur map (LBM) and image quality enhancement (IQE) using the variational Dirichlet (VD) kernel estimation were proposed as a solution to address the quality issues. First, image data was collected by setting different camera parameters for each bridge member. Second, a blur map was generated through discrete wavelet transform (DWT) and a new quality metric to measure the degree of blurriness was proposed. Third, for low-quality images with a large degree of blurriness, the blind kernel estimation and blind image deconvolution were performed to enhance the quality of images. In the validation tests, the proposed quality metric was applied to material image sets of bridge pier and deck taken from UAV, and its results were compared with those of other quality metrics based on singular value decomposition (SVD), sum of gray-intensity variance (SGV) and high-frequency multiscale fusion and sort transform (HiFST) methods. It was validated that the proposed IQA metric showed better classification performance on UAV images for bridge inspection through comparison with the classification results by human perception. In addition, by performing IQE, on average, 26% of blur was reduced, and the images with enhanced quality showed better damage detection performance through the deep learning model (i.e., mask and region-based convolutional neural network).

목차

등록된 정보가 없습니다.

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0