메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
여동훈 (연세대학교) 김현 (연세대학교) 허성진 (연세대학교) 최정우 (연세대학교) 차광수 (연세대학교) 김경환 (연세대학교)
저널정보
대한의학회 Journal of Korean Medical Science Journal of Korean Medical Science Vol.34 No.20
발행연도
2019.1
수록면
1 - 12 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: The processing of emotional visual stimulation involves the processing of emotional and visuoperceptual information. It is not completely revealed how the valence and arousal affect these two aspects. The objective was to investigate the effects of valence and arousal on spatiotemporal characteristics of cortical information processing using distributed source imaging of event-related current density (ERCD). Methods: Electroencephalograms (64 channels) were recorded from 19 healthy men while presenting affective pictures. Distributed source localization analysis was adopted to obtain the spatiotemporal pattern of ERCD on cortical surface in response to emotional visual stimulation. A nonparametric cluster-based permutation test was used to find meaningful time and space without prior knowledge. Results: Significant changes of ERCD in 400–800 ms among positive, negative, and neutral emotional conditions were found in left posterior cingulate cortex (PCC) and right inferior temporal cortex (ITC). In the PCC, the stimuli with higher arousal levels showed more negative ERCD than neutral stimuli. In the ITC, the ERCD for negative stimuli was significantly more negative than those of positive and neutral ones. Conclusion: Arousal and valence had strong influence on memory encoding and visual analysis at late period. The location and time showing significant change in neural activity according to arousal and valence would provide valuable information for understanding the changes of cortical function by neuropsychiatric disorders.

목차

등록된 정보가 없습니다.

참고문헌 (39)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0